Heat transfer solver on distributed domains



 Table of contents

Now let us use distributed domains to write a parallel version of our original heat transfer solver code. We’ll start by copying baseSolver.chpl into parallel.chpl and making the following modifications to the latter:

(1) Add

use BlockDist;
const mesh: domain(2) = {1..rows, 1..cols};   // local 2D domain

(2) Add a larger (n+2)^2 block-distributed domain largerMesh with a layer of ghost points on perimeter locales, and define a temperature array T on top of it, by adding the following to our code:

const largerMesh: domain(2) dmapped Block(boundingBox=mesh) = {0..rows+1, 0..cols+1};

(3) Change the definitions of T and Tnew (delete those two lines) to

var T, Tnew: [largerMesh] real;   // block-distributed arrays of temperatures

Let us define an array of strings message with the same distribution over locales as T, by adding the following to our code:

var message: [largerMesh] string;
forall m in message do
  m = here.id:string;   // store ID of the locale on which the code is running
writeln(message);
halt();
$ chpl -o parallel parallel.chpl
$ ./parallel -nl 3 --rows=8 --cols=8   # run this from inside distributed.sh

The outer perimeter in the partition below are the ghost points, with the inner 8x8 array:

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2

With 4 locales, we might see something like this:

0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
2 2 2 2 2 3 3 3 3 3
2 2 2 2 2 3 3 3 3 3
2 2 2 2 2 3 3 3 3 3
2 2 2 2 2 3 3 3 3 3
2 2 2 2 2 3 3 3 3 3

Exercise “Data.3”

In addition to here.id, also print the ID of the locale holding that value. Is it the same or different from here.id?

(4) Let’s comment out this message part, and start working on the parallel solver.

(5) Move the linearly increasing boundary conditions (right/bottom sides) before the while loop.

(6) Replace the loop for computing inner Tnew:

for i in 1..rows do {  // do smth for row i
  for j in 1..cols do {   // do smth for row i and column j
	Tnew[i,j] = 0.25 * (T[i-1,j] + T[i+1,j] + T[i,j-1] + T[i,j+1]);
  }
}

with a parallel forall loop (contains a mistake on purpose!):

forall (i,j) in mesh do
  Tnew[i,j] = 0.25 * (T[i-1,j] + T[i+1,j] + T[i,j-1] + T[i,j+1]);

Exercise “Data.4”

Can anyone spot a mistake in this loop?

(7) Replace

delta = 0;
for i in 1..rows do {
  for j in 1..cols do {
	tmp = abs(Tnew[i,j]-T[i,j]);
	if tmp > delta then delta = tmp;
  }
}

with

delta = max reduce abs(Tnew[1..rows,1..cols]-T[1..rows,1..cols]);

(8) Replace

T = Tnew;

with the inner-only update

T[1..rows,1..cols] = Tnew[1..rows,1..cols];   // uses parallel `forall` underneath

Benchmarking

Let’s compile both serial and data-parallel versions using the same multi-locale compiler (and we will need -nl flag when running both):

$ which chpl
/project/60303/shared/c3/chapel-1.24.1/bin/linux64-x86_64/chpl
$ chpl --fast baseSolver.chpl -o baseSolver
$ chpl --fast parallel.chpl -o parallel

First, let’s try this on a smaller problem. Let’s write two job submission scripts:

#!/bin/bash
# this is baseSolver.sh
#SBATCH --time=0:5:0         # walltime in d-hh:mm or hh:mm:ss format
#SBATCH --mem-per-cpu=1000   # in MB
#SBATCH --output=baseSolver.out
./baseSolver -nl 1 --rows=30 --cols=30 --niter=2000
#!/bin/bash
# this is parallel.sh
#SBATCH --time=0:5:0         # walltime in d-hh:mm or hh:mm:ss format
#SBATCH --mem-per-cpu=1000   # in MB
#SBATCH --nodes=3
#SBATCH --cpus-per-task=2
#SBATCH --output=parallel.out
./parallel -nl 3 --rows=30 --cols=30 --niter=2000

Let’s run them both:

$ sbatch baseSolver.sh
$ sbatch parallel.sh

Wait for the jobs to finish and then check the results:

$ tail -3 baseSolver.out
Final temperature at the desired position [1,30] after 1148 iterations is: 2.58084
The largest temperature difference was 9.9534e-05
The simulation took 0.008524 seconds

$ tail -3 parallel.out
Final temperature at the desired position [1,30] after 1148 iterations is: 2.58084
The largest temperature difference was 9.9534e-05
The simulation took 193.279 seconds

As you can see, on the training VM cluster the parallel code on 4 nodes (with 2 cores each) ran ~22,675 times slower than a serial code on a single node … What is going on here!? Shouldn’t the parallel code run ~8X faster, since we have 8X as many processors?

This is a fine-grained parallel code that needs lots of communication between tasks, and relatively little computing. So, we are seeing the communication overhead. The training cluster has a very slow network, so the problem is exponentially worse there …

If we increase the problem size, there will be more computation (scaling O(n^2)) in between communications (scaling O(n)), and at some point parallel code should catch up to the serial code and eventually run faster. Let’s try these problem sizes:

--rows=650 --cols=650 --niter=9500 --tolerance=0.002
Final temperature at the desired position [1,650] after 7750 iterations is: 0.125606
The largest temperature difference was 0.00199985

--rows=2000 --cols=2000 --niter=9500 --tolerance=0.002
Final temperature at the desired position [1,2000] after 9140 iterations is: 0.04301
The largest temperature difference was 0.00199989

--rows=8000 --cols=8000 --niter=9800 --tolerance=0.002
Final temperature at the desired position [1,8000] after 9708 iterations is: 0.0131638
The largest temperature difference was 0.00199974

./baseSolver -nl 1 --rows=16000 --cols=16000 --niter=9900 --tolerance=0.002
Final temperature at the desired position [1,16000] after 9806 iterations is: 0.00818861
The largest temperature difference was 0.00199975

On the training cluster

I switched both codes to single precision, to be able to accommodate larger arrays. The table below shows the slowdown factor when going from serial to parallel. For each row correspondingly, I was running the following:

$ ./baseSolver --rows=2000 --niter=200 --tolerance=0.002
$ ./parallel -nl 4 --rows=2000 --niter=200 --tolerance=0.002
$ ./parallel -nl 6 --rows=2000 --niter=200 --tolerance=0.002
30^2 650^2 2,000^2 16,000^2
–nodes=4 –cpus-per-task=2 32,324 176 27.78 4.13
–nodes=6 –cpus-per-task=16 15.3 1/5.7

On Graham (faster interconnect):

30^2 650^2 2,000^2 8,000^2
–nodes=4 –cpus-per-task=2 5,170 14 2.9 1.25
–nodes=4 –cpus-per-task=4 1/1.56
–nodes=8 –cpus-per-task=4 1/2.72

Final parallel code

Here is the final version of the entire code, minus the comments:

use Time, BlockDist;
config const rows = 100, cols = 100;
config const niter = 500;
config const iout = 1, jout = cols, nout = 20;
config const tolerance = 1e-4: real;
var count = 0: int;
const mesh: domain(2) = {1..rows, 1..cols};
const largerMesh: domain(2) dmapped Block(boundingBox=mesh) = {0..rows+1, 0..cols+1};
var delta: real;
var T, Tnew: [largerMesh] real;   // a block-distributed array of temperatures
T[1..rows,1..cols] = 25;   // the initial temperature
writeln('Working with a matrix ', rows, 'x', cols, ' to ', niter, ' iterations or dT below ', tolerance);
for i in 1..rows do T[i,cols+1] = 80.0*i/rows;   // right-side boundary
for j in 1..cols do T[rows+1,j] = 80.0*j/cols;   // bottom-side boundary
writeln('Temperature at iteration ', 0, ': ', T[iout,jout]);
delta = tolerance*10;   // some safe initial large value
var watch: stopwatch;
watch.start();
while (count < niter && delta >= tolerance) do {
  count += 1;
  forall (i,j) in largerMesh[1..rows,1..cols] do
	Tnew[i,j] = 0.25 * (T[i-1,j] + T[i+1,j] + T[i,j-1] + T[i,j+1]);
  delta = max reduce abs(Tnew[1..rows,1..cols]-T[1..rows,1..cols]);
  T[1..rows,1..cols] = Tnew[1..rows,1..cols];
  if count%nout == 0 then writeln('Temperature at iteration ', count, ': ', T[iout,jout]);
 }
watch.stop();
writeln('Final temperature at the desired position [', iout,',', jout, '] after ', count, ' iterations is: ', T[iout,jout]);
writeln('The largest temperature difference was ', delta);
writeln('The simulation took ', watch.elapsed(), ' seconds');

This is the entire multi-locale, data-parallel, hybrid shared-/distributed-memory solver!

Exercise “Data.5”

Add printout to the code to show the total energy on the inner mesh [1..row,1..cols] at each iteration. Consider the temperature sum over all mesh points to be the total energy of the system. Is the total energy on the mesh conserved?

Exercise “Data.6”

Write a code to print how the finite-difference stencil [i,j], [i-1,j], [i+1,j], [i,j-1], [i,j+1] is distributed among nodes, and compare that to the ID of the node where T[i,i] is computed. Use problem size 8x8.

This produced the following output clearly showing the ghost points and the stencil distribution for each mesh point:

empty empty empty empty empty empty empty empty empty empty
empty 000000   000000   000000   000001   111101   111111   111111   111111   empty
empty 000000   000000   000000   000001   111101   111111   111111   111111   empty
empty 000000   000000   000000   000001   111101   111111   111111   111111   empty
empty 000200   000200   000200   000201   111301   111311   111311   111311   empty
empty 220222   220222   220222   220223   331323   331333   331333   331333   empty
empty 222222   222222   222222   222223   333323   333333   333333   333333   empty
empty 222222   222222   222222   222223   333323   333333   333333   333333   empty
empty 222222   222222   222222   222223   333323   333333   333333   333333   empty
empty empty empty empty empty empty empty empty empty empty
  • note that Tnew[i,j] is always computed on the same node where that element is stored
  • note remote stencil points at the block boundaries

I/O

Let us write the final solution to disk. Please note:

  • here we’ll write in ASCII (raw binary output is slightly more difficult to make portable)
  • a much better choice would be writing in NetCDF or HDF5 – covered in our webinar “Working with data files and external C libraries in Chapel”
    • portable binary encoding (little vs. big endian byte order)
    • compression
    • random access
    • parallel I/O (partially implemented) – see the HDF5 example in the webinar

Let’s comment out all lines with message and assert(), and add the following at the end of our code to write ASCII:

use IO;
var myFile = open('output.dat', iomode.cw);   // open the file for writing
var myWritingChannel = myFile.writer();   // create a writing channel starting at file offset 0
myWritingChannel.write(T);   // write the array
myWritingChannel.close();   // close the channel
$ chpl --fast parallel.chpl -o parallel
$ ./parallel -nl 3 --rows=8 --cols=8   # run this from inside distributed.sh
$ ls -l *dat
-rw-rw-r-- 1 razoumov razoumov 659 Mar  9 18:04 output.dat

The file output.dat should contain the 8x8 temperature array after convergence.

Other I/O topics